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1. Phys.: Condens Matter 7 (1995) 9127-9145. Printed in the. UK 

The cohesion of solid cubic calcium fluoride 

N C Pyper 
University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW, UK 

Received 14 August 1995 

AbstracL The cnhesion of cubic solid calcium fluoride is studied theoretically within the 
hamework of the fully ionic model by a nonempirid approach in which the major portion 
of the cohesion, namely that not originating from electron correlation effects. is mmputed ab 
initio using the relativistic integds program. Elecmn correlation is incorporated by adding the 
short-range contributions calculated using density functional theory to the inter-ionic dispersive 
attractions evaluated with the inclusion of their damping caused by the overlap of the ion 
wavefunctions. The interaction of the fluoride ion with its environment in crystal significantly 
modifies the computed inter-ionic patentials and two different methods for describing these 
modifications are compared. The more sophisticated and realistic of the two methods predicts 
values for the ladice energy, equilibrium closest cation-anion separation and bulk modulus in 
excellent a p m n t  with experiment. 

1. Introduction 

Calcium fluoride is not onIy technologically important as a super-ionic conductor [1,2] 
but is also one of the simplest metal dihalides. These materials have recently become the 
subject of renewed interest on two accounts 13-51, Firstly, it has been a long-established 
goal to understand the structures adopted by these materials in the solid state, including 
those of crystals whose low symmetries were previously considered. to be evidence for 
partial covalency. .The most recent study [3] reversed the earlier belief in partial covalency 
by demonstrating that the slructures of all these materials can be understood on a-fully 
ionic basis provided that the electric dipole polarization of ions in sites of low symmetry 
is considered. Secondly, the dynamical structures of melts of these dihalides have been 
investigated [4,5] particularly with regard to elucidating the role of anion polarization in 
determining the short- and intermediatsrange order. All these theoretical studies [1-5] 
required information concerning the inter-ionic interactions which were taken to be effective 
two-body potentials having a semi-empirically determined Born-Mayer form.. 

Despite the success of the above investigations there are many factors 1681 which 
motivate the theoretical study of polar solids by using non-empirical techniques. Since 
it would be inappropriate to detail these again here, it suffices to point out that it has 
been shown [9] that a cation-anion inter-ionic  potential determined semi-empirically from 
data on one polymorph will not be fully transferable to a second polymorph having a 
different coordination number. Indeed it was shown [9] that one could not predict that 
caesium chloride adopts its experimentally observed eight fold coordinated structure without 
considering this non-transferability of the conventional effective two-body cation-anion 
potential. An 'overall approach for calculating, non-empirically, the electronic structures 
and hence inter-ionic potentials of binary solids within the assumption of a suitably defined 
fully ionic model has been presented and found to give a good account of the cohesive 
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properties of all five halides studied, as well as performing not unreasonably for MgO 
[7]. This approach was recently refined [lo] in order to meet the more severe tests of 
both accounting for the cohesion of other binary oxides [lo, 111 and correctly predicting the 
crystal structure of caesium chloride [9]. The present paper has two objectives, the first being 
to further test this fully ionic model by studying solid calcium fluoride in its ground state 
fluorite structure. A major part of this investigation lies in determining whether the earlier 
method [7] for generating in-crystal anion wavefunctions can account for the important 
in-crystal modifications of the properties of the fluoride ion or whether, as is the case for 
oxides, subsequent refinements 1101 are needed for a fully satisfactory description. The 
second objective of this paper, attained as a by-product of achieving the first, is to present 
information, such as two-body potentials, concerning the cohesive energetics which could 
form the basis for future studies of either crystal defects or the high-pressure polymorph 
having the PbC12 structure [12] or the liquid melt. 

2. Theory and computational methods 

2.1. Basic theory 

2.1.1. Fundamental assumptionr. The fundamental assumption of the present study is 
that CaF2 is fully ionic. Although the discussion [13] might suggest that this concept is not 
uniquely defined, the arguments of [8] justify the following definition of full ionicity used in 
all the previous studies of polar solids [7,9-11,141 performed with the relativistic integrals 
program [14,15]. Here a solid is taken as fully ionic provided that, with the neglect of 
inter-ionic electron correlation, the total electronic wavefunction of the entire crystal can 
be written as an anti-symmetrized product of wavefunctions for the individual ions, each of 
which contains an integral number of electrons and is spherically symmetric with respect 
to its nucleus. Here the derivation [7,8,10] of the expression for the cohesive energy that 
results from this ionicity assumption ind the computational methods [7,8,10,14] need only 
be outlined, and a full description presented of just those refinements unique to the present 
study. 

The wavefunction and properties of the Ca++ ion were taken to be those of 
the free ion because there is abundant evidence 116-191 that cations having 1s’ or 
np6 outermost electronic configuration are essentially unaffected by their in-crystal 
environments. However, such environments greatly modify many anion properties such 
as the electronic charge distribution [7,8,10,17,18], polarizabilities [16-191 and inter-ionic 
dispersion coefficients [20,21]. The earlier [7] and later more refined [lo] methods for 
generating anion wavefunctions adapted to their in-crystal environments are described in 
section 2.2. The total crystal energy is written as the sum of the major and uncorrelated 
part plus corrections arising from the affects of electron correlation. 

For uniform expansions or contractions of a cubic crystal from its equilibrium structure, 
the nuclear geometry is defined by the closest cation-anion separation, to be denoted R. 
For a bound crystal with this geometry, the negative binding energy UL(R) is defined as the 
difference between the total crystal energy and the sum of the energies of free isolated F- 
and Ca++ ions. The equilibrium closest cation-anion separation, denoted Re, is the value 
of R for which UL(R) is minimized. The lattice energy De, defined as the energy required 
to convert the crystal at its equilibrium geometry into free F- and Ca++ ions, then equals 
-UL(R~). Nuclear zero-point motion causes Re to differ very slightly from the equilibrium 
R value measured at 0 K as well as making a small contribution to the lattice energy. These 
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effects are sufficiently small that they can be disregarded here. The bulk modulus, denoted 
B and defined by the relation (la) with V the volume occupied by one formula unit, can 
be predicted from UL(R) through 

where k, (equal to 16/(3&) is the constant relating V to R as k,R3. 

2.1.2. Formulation exclusive of electron correlation. In the approximation, denoted by 
a zero superscript, in which all effects of electron correlation are neglected, the electronic 
wavefunction for the entire crystal reduces to a single anti-symmetrized product of individual 
ion wavefunctions each of which is a single anti-symmetrized product of one electron orbital. 
An expression for the total crystal energy resulting from this approximation has been derived 
[22] by taking the expectation value of the usual electronic Hamiltonian. After neglecting the 
resulting explicitly threebody and higher-order multi-body terms, expected to be small [SI, 
and subtracting the Hartree-Fock, or in the relativistic approach the Dirac-Fock , energies 
of the free F- and Ca++ ions, the crystal binding energy~ @(R) predicted for one mole of 
formula unit CaFz in this &correlated approximation is found [7.8] to be 

U!(R) = Nf{2E;JR) - 5.03878488/R + SV,0,,(R) + 6 [  V,0;(2/./5R) 

+ V & ( 2 d b / 3 ) R ) ] } .  (2) 

Here all the terms inside the curb brackets are expressed in atomic units on a scale in which 
electrons and nuclei have zero energy if stationary and isolated. The constant N, (equal to 
2625.5) converts an energy per ion'in atomic units into an energy per mole of crystal. 

The quantity E:e(R) in (2) is the remangement energy required to convert one free 
fluoride ion of Dim-Fock energy E$ into the fluoride ion having the wavefunction 
considered optimal for the crystal having closest cation-anion separation R so that 

E:e(R) = Ei(R) -E: / .  (3) 

Here E i ( R )  'is the energy that a fluoride ion with a wavefunction considered optimal for 
the crystal would have when isolated, if it were then to retain'its in-crystal wavefunction. 
Thus is computed by taking the expectation~value of the free-ion Hamiltonian 
using the wavefunction for the in-crystal F- ion. The in-crystal F wavefunctions were 
computed using a version of the Oxford Dirac-Fock program [23] modified by adding a term 
F$\(r,; R )  to the potential energy acting on an anion electron, to describe its interaction 
with the crystalline environment. This term, whose explicit representations are discussed 
in section 2.2, depends on R and hence the energy E i ( R )  and rearrangement energy 
E;JR) depend on this variable. Both the energy E i f  and the Ca++ ion wavefunction 
were computed in a standard run of the Dirac-Fock program. 

In the absence of an overlap between the wavefunctions of the ions, the interaction 
between every pair of ions would~have the purely Coulombic form (q&)/(X,&) where 
qa is the net charge on ion a and X& is a purely geometrical constant which yields the 
separation of the pair of ions as x . ~ R .  The sum of all such purely Coulombic interactions 
enters (2) as the Madelung term -5.038 784 88/R. If the overlap between the wavefunctions 
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of the ions is not negligible, the purely Coulombic interaction is augmented by a correction 
V~~~(X,&). of short range as denoted by the s subscript, given by 

%(&bR) VA(X.bR) -%qb/(&bR). (4) 

For the pair of ions a and b separated by a distance xabR, v:b(xb(n.bR) is their total interaction 
energy measured relative to the sum (E:(R)+@(R) of the energies that the two ions would 
have if each retained its in-crystal wavefunction whilst not interacting (E;(R) for a Cat+ 
ion is just the energy of the isolated ion). For CaFz, the only non-negligible short-range 
interactions are: those (V$,(R)) between a cation and its eight closest anion neighbours; 
those V$,(Z/fiR) between one anion and its six nearest anion neighbours at a distance 
2/(&R; and the interaction V&(2fi2/3)R) between one cation and its 12 closest cation 
neighbours at a distance 2 A 2 / 3 ) R .  The terms v&(&bR) were evaluated by using the RIP 
program to compute, from the free Caf+ and in-crystal F- Dirac-Fock wavefunctions, the 
total interaction energies v$(&bR). The RIP program results for VLb(xabR) are exact 
once the wavefunctions of the interacting ions have been specified. The use of the RIP 
program thus avoids the uncertainties, discussed elsewhere [7,24,25], which would arise 
were the Vib(x.bR) to be computed using density functional theory. Although relativistic 
effects would be expected to be very small for CaF2, the Dirac-Fock and RIP computations 
took full account of relativity by using four component wavefunctions for the individual 
orbitals and a relativistic Hamiltonian containing the Dirac kinetic-energy operator. Non- 
relativisitic computations with the Dirac-Fock and RIP programs differ from their relativistic 
counterparts solely by using an artificially large value for the velocity of light. Thus there 
would be no computational economi& in using non-relativistic theory. 

2.1.3. Total crystal cohesion including electron correlation. Electron correlation contributes 
to both the fluoride ion rearrangement energy and to the interaction energy of every pair 
of ions. These contributions were evaluated from the DKac-Fock wavefunctions for the 
individual free Ca++ and in-crystal F- ions and then added to U:(R) to produce the complete 
prediction for the cohesive energy function U'@). This approach neglects the explicitly 
three-body and higher-order multi-body conhibutions to the crystal correlation energy which 
are expected to be small for the reamns presented elsewhere [PI. 

The total fluoride ion rearrangement energy E,,(R) is given by adding to ER(R) the 
electron correlation contribution E F ( R ) ,  so that 

E,,(R) = E?JR) + E F ( R ) .  (5) 

The term E F ( R )  is defined as the total correlation energy of the in-crystal F- ion minus 
the correlation energy of a free fluoride ion, and is computed using the method described 
in section 2.3. 

The contribution of electron correlation to the interaction of the pair of ions a and 
b separated by the distance xObR can be decomposed into a sum of a long-range term, 
usually called the dispersive of van der Waals attraction, plus a short-range term [26]. 
The summation over all pairs of ions of the dispersive attractions within each pair yields 
the total dispersion contribution (U.&R)) to the crystal cohesion which is calculated 
by the methods described in section 2.4. The short-range contribution ( V ~ ~ ( x u b ( R ) )  of 
the electron correlation to the energy of interaction between the ions a and b originates 
explicitly from the overlap of their wavefunctions and therefore vanishes for separations 
X,bR which are sufficiently large that this overlap has become negligible. Consequently, 

~~ 



The cohesion of solid cubic calciumpuoride 9131 

the only non-negligible such terms are those for ion pairs for which the uncorrelated short- 
range interactions are not negligible. It is therefore useful to regard the term VzF(X&?) as 
the correlation correction to the uncorrelated short-range interaction and to define the total 
short-range interaction, Kob(X&), between ion a and b through 

The density functional theory of electronic structure provides the only currently practical 
method for evaluating the V,.db"(&) for a pair of in-crystal ions. Here these terms 
were evaluated using the original method of Gordon and Kim [27] in which the required 
correlation energy functional is taken to be that for a non-relativistic electron gas of uniform 
density and infinite extent. This functional is presented in section 2.3 as equation (13). The 
reason why the predicted correlation energies would remain essentially unaffected even if the 
theoretical inconsistency of using a non-relativistic functional with relativistic wavefunctions 
were to he removed has been explained [SI. 

The addition to Uj(R) of the dispersive ataactions, as well as the contributions of 
electron correlation to both the anion rearrangement energy and short-range two-body 
interactions, yields the result (7) for the cohesive energy function UL(R) 

UL(R) = N,s(ZE,,(R) -5.03878488/R +BV~',ca(R)+6[V,aa(Z/J?R) 

+ &CC(2&2/3)R)]} f U d i r p ( R ) .  (7) 

There is evidence [8, 281 that the dispersive attractions remain essentially distinct from the 
correlation contributions to the short-rangeioverlap dependent two-body interactions in (6). 
even when the latter are evaluated using (13). Hence there will be only minimal double 
counting of the two-body correlation contributions when this functional enters (7) through 
its use in (6). 

2.2. Description of the in-crystal modijicatwm of the fluoride ion 

An anion in a cubic crystal with closest cation-anion separation R differs from the isolated 
ion because an electron at a position T. relative to the anion nucleus experiences a potential 
energy F e n U ( ~ " ;  R), called the environmental potential, which is generated hy the nuclei 
and electrons of all the other ions. When the anion nucleus is taken as origin F=""(T=; R )  
can be expanded into a series where spherical harmonics describe its angular dependence. 
In the conventional description of the electronic structure of a closed-shell ion in which all 
the orbitals have their standard central field form [29] and are either completely filled with 
electrons or entirely empty, the only portion of FenV(~";  R) that needs to be considered 
is the spherically symmetric part Fi:i(ru; R )  which, for a given R, depends on just the 
distance r, of the electron from the anion nucleus (71. 

It is useful to consider that F e n U ( ~ = ;  R )  and hence FJ:;(r,;R) is composed of two 
contributions [7,8,30], the first being that which would be generated if all the other ions 
b (# a)  were replaced by point charges of size @ .  The second contribution is the sum of all 
the additional effects generated by both the finite spatial extensions of the electronic charge 
distributions of these other ions, and by purely quantum mechanical effects originating from 
the Pauli principle. Since, firstly, all the ions are spherically symmetric and, secondly, the 
quantum mechanical effects originate from the overlap of orbitals belonging to different 
ions, the second contribution to Fenu(~=; R) and hence FJ:i(r.; R )  is zero in those spatial 
regions where the electron density of all ions b (# a) is negligible. The point lattice 

. .  
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contribution to Fi:L(r,,; R) is a constant and stabilizing potential equal to / R  from 
r, = 0 to r. = R, after which it rises towards zero for larger r, and then passes 
through several smaller oscillations associated with other distances between the anion a 
and other ions. For a CaFz crystal the positive constant q5env equals 1.76267 [31], the 
Madelung constant of the CsCl lattice. Thus the point lattice contribution to FL:L(r& R )  
is a stabilizing well acting to contract the anion and reduce its polarizability 17,s. 16- 
18,301. The second contribution to FL:i(r,; R) constitutes a repulsion in spatial regions 
where other ions have non-negligible electron densities, and therefore acts to reinforce the 
contractions and polarizability reductions generated by the point-lattice term. There are 
many models for F;:;(r,,; R); both the earlier, reviewed in [SI, and the later refinements 
have been extensively tested [IO]. Any physically reasonable model for Fi:L(ry; R) must 
both reduce to that generated by a point-charge lattice where the electron density of other 
ions is negligible and include, in regions of non-negligible electron density from other ions, 
a repulsion dependent on both the cation and crystal geometry. 

The simplest model for F2zA(ra; R), that is physically reasonable in the sense just 
outlined, is the radius variable Madelung Watson (RVMW) function 171 (FRVMW(ro; R)), 
defined as 

with 

kem/Rw = 4enu/R.  (9) 

The definition (9 )  for k,,, causes FRvMW(ro; R) to correctly reduce, for r, < Rw, to the 
spherically symmetric part of the potential generated by the point lattice with closest cation- 
anion separation R. Thus the parameter Rw is to be interpreted as the largest distance r, 
from the anion nucleus at which the electron density arising from the first shell of cation 
neighbours is still negligible. The form (8b) is introduced for r, > Rw, because, in 
spatial regions of non-negligible cation electron density, an anion electron will experience a 
repulsive potential acting to reduce the constant stabilization arising from the point lattice. 
In the RVMW model, Rw is taken to be R - Rc where the constant Rc is either the 
cation radius or some closely related combination of cation properties [7]. Here Rc will 
be taken to equal the ionic radius (0.99 A) of Ca* [32], thus having the value of 1.87 au 
used previously in RVMW model computations for CaO. The RVMW model satisfactorily 
described the five halides examined [7], as well as performing not unreasonably for MgO, 
but was subsequently shown to be inadequate for CaO [lo]. Any inadequacies of the model 
must arise from the particular mathematical form assumed for the repulsive potential arising 
in spatial regions of non-negligible cation electron density. There is no evidence for the 
correctness of the form assumed in the RVMW model which also does not allow for the 
possibility that the full function F;:L(r,; R) might become positive in regions of high cation 
electron density. 

The 'optimized with eigenvalues Madelung Fermi smoothed' (OEMFS) and 'optimized 
with density Madelung Fermi smoothed' (ODMFS) models for Fj:L(ra: R) were the two 
most satisfactory descriptions that emerged from a thorough examination [lo] of ways for 
representing the repulsive contributions to the environmental potential arising in regions of 
non-negligible cation electron density. For the two oxides studied, MgO and CaO, these 
two models were found to yield essentially identical predictions. It is straightforward to 
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construct the point lattice contribution to FJ:L(ra; R )  exactly, even though the gradient of 
this function with respect to r, is discontinuous at r.-values corresponding to the positions 
of other ions. However, it was found [IO] that these discontinuities introduced numerical 
difficulties into the computation of the in-crystal anion wavefunctions. This result coupled 
with the observation that the total FJ;;(r=: R) will have large overlap Contributions at those 
r. values where the gradient of the point lattice term is discontinuous shows that it is 
unnecessary to model these discontinuities. In both the OEMFS and ODMFS models the 
point lattice contribution to Fi:i(r.;~R) is therefore represented by the Madelung Fermi 
smoothed function FMFS(r , ;  R ) ,  defined by 

(10) 
The parameter ro is chosen such that (IO) exactly reproduces the point lattice potential 
where the latter equals -&/(2R) whilst g is fixed by requiring that (IO) reproduces 
the point lattice result half-way between R and ro, that is at r. = R + (ro - R ) / 2 .  For 
the fluorite lattice, the resulting values of ro = 1.23806R and g = 16.51508/R.ensure 
that (10) accurately reproduces the point lattice result (-&"/R) at small r, where cation 
electron density is negligible. The ODMFS model [lo] results from adding to FJ;;(r& R) 
the representation that consideration of the density functional theory of electronic structure 
suggested for the overlap contribution to FMps(ry; R) .  Thus the ODMFS environmental 
potential F O D M F S ( r a ;  R )  has the form 

(11) 

F M F S ( r &  R )  = -(A.~"/R){~ +exp[g(r, -ro)]]- ' .  

- 
~ 

FODMFS(ro;  R )  = F M F S ( r a ;  R )  + A ~ { [ p r b ( T b ) ] ' } "  
b 

where the sum over b is over the eight cations adjacent to anion a and pTb(Tb) is the total 
electron density of ion b, the position Tb being measured relative to the b nucleus. The 
superscript (0) denotes the spherically symmetric term in the series which results when 
[pTb(Tb)]' is expanded about the nucleus of anion a into a series in which the angular 
dependence about the a nucleus is described using spherical harmonics centred on this 
nucleus. The density pTb(Tb) of cation b is spherically symmetric with respect to the b 
nucleus and was evaluated using the Dim-Fock wavefunction for a free Ca++ ion. The 
constants A and k in (11) would have the values 4.785 and 2/3 respectively, if the density 
functional theory arguments used to suggest (11) were exact. In practice these constan& 
are determined at each R through the variational criterion of maximizing the magnitude 
(lU!(R)I) of the crystal cohesion (2)  predicted with the neglect of electron correlation. 
Although A and k could, in principle, be determined by maximizing the cohesion predicted 
with the inclusion of the electron correlation contributions, this procedure is highly dubious 
if these are not calculated exactly from a trial wavefunction but are evaluated approximately 
using density functional theory. The representation of the overlap contribution in (1 1) clearly 
vanishes where the cation electron density is negligible and suggests that FJ:A(ra; R )  rises 
much more rapidly from -&/R than the RVMW function (8) as r, increases from the 
small values where only the point lattice term is appreciable. The ODMFS model also 
encompasses the possibility that F;:L(rc; R )  becomes positive in regions of high cation 
electron density because a value greater than zero will result if the variational optimization 
of A and k produces a sufficiently large value for A.  

This paper investigates the ability of the RVMW and ODMFS models to describe the 
in-crystal modifications of the fluoride ion in CaF2. Although there are many other models 
for FJ:;(ra; R) ,  these have not been investigated in detail for CaFz because the results and 
discussion presented in [IO] show that either they have serious theoretical deficiencies or 
that the results are not expected to be significantly different from those of either the RVMW 
or ODMFS approaches. 
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2.3. The electron correlation contribution to the fluoride ion rearrangement energy 

Density functional theory would appear to provide the only currently feasible method for 
computing the correlation energy of an anion in a crystal. A comparison [ l o ]  of the ability 
of the many different variants of density functional theory to predict the contributions of 
electron correlation to both total atom energies and ionization potentials showed that no 
one variant was clearly preferable and that the performance of all of them was no better 
than mediocre. There is thus no reason for preferring technically more complex approaches 
over the commonly used local density approximation in which the spatial variation of the 
electron density is considered to be sufficiently slow that the correlation energy functional 
Fco"[p(r)J at position r can be taken to equal that of a non-relativistic infinite electron 
gas having a uniform density equal to that of the system at position T.  

Standard application of the local density approximation incorrectly predicts a one- 
electron atom to have a non-zero correlation energy and similarly introduces spurious self- 
correlation terms into the calculation of the correlation energy of any multi-electron system. 
This objectionable feature was circumvented here by using the Cowan modification 1331 
which yields a prediction E? for the total correlation energy of ion a gas 

E? = p i ( r ) F " " [ p ~ , ( r )  - pi ( r ) ]  dr .  

The total electron density prU(r)  of ion a is evaluated in the Dirac-Fock approximation as 
a sum of contributions p i ( r )  from the individual orbitals with the sum over i being over all 
the occupied orbitals each containing one electron. The local density functional used was 
that introduced by Gordon and Kim [271 and given by 

F C o " [ p ( ~ ) J  = -0.4388-' + 1.325,6-3/2 - 1.47,K2 - 0.46-5/2 

Fco"[p(r)] = 0.0311 In ,3 - 0.048 + 0.0098 In ,5 - 0.0lg 

B > 0 

B < 0.7 

( 1 3 4  

( 1 3 4  

B = (3/[4np(r)J1"3. (14) 

FCorr[p(r)]  = -0.06156+0.01898 In p 0.7 < 6 < 10 (13b) 

with 

The prediction derived using (12K14)  for the total correlation energy of an atom or ion is 
invariably too large by a factor of roughly two [IO]. The required contribution E F ( R )  
of electron correlation to the fluoride ion rearrangement energy was therefore evaluated by 
introducing a correction factor B,, into the prediction derived from (12) so that one has 

E F ( R )  = B , , , k F ( R )  - E,, Ccorrl. (15) 

Here E F ( R )  is for the fluoride ion in the crystal with closest cation-anion separation R 
the prediction derived for the correlation energy by using in (12) the in-crystal DiraoFock 
wavefunction computed with the inclusion of the environmental potential FJtL(r,; R )  for the 
considered R value. The quantity E 2 y  in (15) is the prediction of (12) for the correlation 
energy of a free F- ion. The correction factor B,,, is derived as the exact correlation 
energy of the free fluoride ion divided by the prediction E 2 y  of this energy afforded by 
(12). Thus Bo, ,  is the factor by which the prediction of (12) must be multiplied if the 
true result is to be reproduced. Since the exact correlation energy of a free fluoride ion is 
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-0.398 au [341 compared with the corresponding E z y  result of -0.69093 au, E , ,  has 
the value 0.576. . .  . 

This method of deriving B,,, is less complex than that used [lo] to obtain the 
corresponding correction factors for in-crystal 02- ions. For a doubly charged anion the 
rearrangement energy, being defined as the energy required to convert a free electron and a 
free singly charged anion into kin-crystal doubly charged anion, is both much larger and 
more strongly dependent on the crystal geometry than E,(R) defined for a halide ion by 
(3) and (5). Consequently, it had to be recognized that it would have been inappropriate to 
derive the correction factor from data relating entirely to the free ion and that so far as this 
correction factor was concerned the behaviour of this in-crystal anion resembled that of an 
isoelectronic species having a greater nuclear charge. Such complications do not need to be 
considered for a halide ion for which the rearrangement process just involves a compression 
of the ion relative to its free state corresponding to a much smaller energy change. 

2.4. The dispersion energy 

2.4.1; Basicformulism. The dispersive attraction between an ion U and a second ion 
b is that part of the inter-ionic correlation energy that does not involve exchange of 
electrons between the ions [26]. This attraction does not therefore originate from the 
overlap of the ion wavefunctions and is non-zero even for inter-ionic separations xobR 
which are sufficiently large that  this overlap is negligible. For these large distances, the 
dispersive attraction can be expanded into the familiar multipole series whose first two 
terms are the instantaneous dipoleinduced dipole interaction - C & z b ) ( ~ . b R ) - ~  and the 
instantaneous dipoleinduced quadrupole interaction -Cg(ub)(x,bR)-8 [35,361. For inter- 
ionic separations sufficiently small that the overlap between the ion wavefunctions is not 
negligible each term -Cn(Ub)(&b)-n in the multipole series has to be multiplied by a 
damping function x,"b(x.bR) which reduces the magnitude of the undamped, interaction 
[26,35,37,381. For distances X& for which this overlap is appreciable, dispersion terms 
having high n values are very small because the X , " b ( ~ & )  decrease rapidly with increasing 
n. Since such terms are also unimportant at large xobR due to their (xabR)-" dependence, 
even though the damping functions are then close to unity, only the dipole-dipole and 
dipolequadrupole dispersive attractions need to be retained in the evaluation of the total 
crystal dispersion energy U,jisp(R). After retaining only these terms and noting that the 
only damping functions significantly less than unity are those for the closest cation-anion, 
anion-anion and cation-cation pairs; Udirp(R) reduces to expression (2.22) of [7]. Hence 
the evaluation of this energy requires knowledge of only the damping functions and dipole- 
dipole C&b) and dipolequadrupole Cg(ub) dispersion coefficients. 

The function xT(xaaR) damping that portion varying as (x,,R)-" of the dispersive 
attraction between two like species depends, in addition to the inter-nuclear separation, on 
just a single dispersion damping parameter d. for the species U .  For two unlike species, the 
damping function X,"'(X,bR) depends on the same two parameters d, and db that control 
the-damping of the interactions between the two like species. The function x?(xooR) 
damping the dipole-dipole dispersive attraction between two like species has been derived 
by Jacobi and Csanak [38] whose general formalism was used subsequently ([7] and erratum 
1391) to derive both the function X t 6 ( X & )  damping the corresponding attraction between 
two unlike species as well as the functions xF(xouR) and Xtb(Xab,R) damping the dipole- 
quadrupole dispersive attractions. Although in general d, and db depend on n,  it has been 
shown [7] that for the interaction of systems having p6 outermost electronic configurations, 
the damping parameters are the same for both the n = 6 and n =~ 8 terms. The damping 
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parameter d. is the sum of a contribution from the electronic ground state of species a 
plus one from the lowest-energy excited state having the correct symmetry to contribute to 
the sum over states perturbation theory description of the corresponding dispersion energy 
[40,411. For an ion in which the potential energy experienced by an electron varies as 
ra-’ at both intermediate and large distances r,, from the nucleus, do is evaluated from the 
eigenvalues of the most loosely bound orbitals in the ground and relevant lowest excited 
state [40,41]. Since an electron both in a free ion and in the RVMW description of an anion 
experiences such a potential energy, the Ca++ damping parameter dc as well as that dA 
for the F- ion in the RVMW model were derived from the orbital eigenvalues as detailed 
elsewhere [7,10]. The dc value reported in table 1 has already been derived [lo] whilst 
dA in the RVMW model is found to be 1.616. Since an anion electron in the ODMFS 
model does not experience a potential energy varying as rT1 except at distances r, from the 
nucleus at which the anion electron density is negligible, dA in the ODMFS model cannot be 
deduced from the orbital eigenvalues. Consequently the ODMFS anion dA value reported 
in table 1 had to be deduced [41] from the decay of the outermost orbitals at intermediate 
distances from the nucleus using the method described elsewhere [lo]. 

Table 1. The dipoledipole dispersion cwfficients. dispersion damping pmmaers and ancillary 
data for CaFz (au)(]). 

EA PC PA cs(Cc) cs(A.4) cb(c.4) dc d A  

3.193 6.843 6.106 4.455 10.574 28.337 16.700 3.240 , 2.755 

(I) For species n (=cation C or anion A). best polarizability (a.), electron number (Pa) ,  dipoledipole dispersion 
coefficient C&b) derived from (16) using tabulated aO and Po and dispersion damping parameter d. derived 
from free cation and ODMFS anion wavefunctions as described in text. 

It is now well established [7,20] that C&b) coefficients for in-crystal ions are most 
reliably evaluated from the dipole polarizabilities rr, and a b  of the ions by using the Slater- 
Kirkwood formula [42] 

provided that the electron number Pa for each ion a is chosen such that (16) exactly 
reproduces the Cs(ii) coefficient for the inert gas i isoelectronic with ion a from the exact 
polarizability ai of that gas. The electron numbers required for Ca++ and F- have already 
been derived [7] and are presented in table 1. The Ca++ polarizability (or=) presented in 
table 1 is the prediction [18] of an accurate ab inirio quantum chemistry computation which 
included the effects arising from electron correlation. The total molar polarizability of CaFz 
is deduced to be 16.879 au by substituting the experimental value (2.03866 [43]) of the 
high-frequency dielectric constant and molar volume deduced from the room-temperature 
cell side of 5.462 A into the Clausius-Mossotti relation 1121. The fluoride ion polarizability 
(an)  presented in table 1 was derived by subtracting ac from the molar polarizability equal 
to ac + &a. The C&b) coefficients calculated from these polarizabilities and electron 
numbers using (16) and assembled in table 1 are expected to be in error by 5% at most 
[7,20]. The use of both the experimental molar polarizability and cation polarizability 
predicted with the inclusion of electron correlation ensures that the correlation contributions 
are included in the C&b) values of table 1. 
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2.4.2. The dipole-quadrupole dispersion coeficients. The dipolequadrupole dispersion 
coefficient Cs(ab) is given by the sum 

(17) 
Cg(ab) = C, DQ (ub) + C p ( a b )  

where the  contribution^ C:'(ab) originates from the quadrupole induced on ion b by a 
dipole instantaneously present on ion a. The quantity @(ab) similarly governs the 
attraction resulting from the interaction between a quadrupole induced by ion a by a dipole 
instantaneously present on ion b. It has been shown [7,21] that, in the absence of ab initio 
quantum chemistry computations, the currently most reliable method of deriving Cs(ab) 
coefficients is to use the Starkschall4ordon formula [44]. 

The Starkschall-Gordon formula an approximation derived by making a clever choice 
for the average energy in the sum over perturbation theory expression for the dispersion 
energy, relates Cy(,,) to the corresponding dipole4ipole dispersion coefficient Cs(ab) 
through 

Here is, for all the electrons belonging to ion a, the expectation value of the nth power 
of their distance from the nucleus of ion a with (r'), being the corresponding quantity for 
ion b. This presentation implies that all the electrons belonging to a given ion should be 
included in the evaluation of (r4)a and (&. However since the interactions responsible 
for the dispersive attractions have only negligible contributions from the inner electrons, it 
would be illogical to include their contribution in the evaluation of the expectation values 
in (18). For both pairs of inert gases and pairs of isoelectronic cations and halide ions in 
ionic solids it was shown [7,21] that the inclusion of all the electrons in the evaluation of 
the (rn)a significantly degraded the quality of the predictions and that consideration of only 
the six outermost p electrons yielded significantly more accurate results. Hence, only these 
six outermost electrons will be considered in the present applications of (18). 

Despite the demonstrated utility of the Starkschall-Gordon formula in contrast to those 
of Margenau [45] and Narayan 1461 which often yield predictions in error by several 
hundred per cent [7], there is good evidence [21,47] that (18 )  usually underestimates dipole- 
quadrupole dispersion coefficients for pairs of species each of which has a p6 outermost 
electronic configuration by at least 1&15%. This underestimation frequently exceeds 20%, 
as is the case for the ion pairs in MgO where the smallest error is some 23% [47], but 
has not so far been known to be greater than the 30% underestimation found [21] for 
CS(Na+. . .Na+). It has been pointed out 18,471 that, if the in-crystal environment caused 
the same fractional modification in the C8(AA) coefficient as that which it induces in the 
C6(AA) coefficient, then a better estimate CFA(AA) of C8(AA) in the salt with cation M 
could be deduced by using 

CfA(AA) = C y  (AA) [CyA(AA)/CtA (AA)] (19) 

if an accurate value (CFA(AA)) was known in the salt with cation N. The present amaction 
of this relation is that a value for C,(l-..F-) in LiF has been computed ab initio [21] 
using coupled HaiIxee-Fock (CHF) theory. However, the suggestion (19) has been shown 
to be too superficial by the fact that it predicts unreasonably large values for C,(O-*..O-*) 
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in CaO, Tho2 and U02 [47] from the accurately known value of C~(0-* . .0-~)  in MgO. 
Although the Starkschall-Gordon formula supports the idea that an environmentally induced 
increase of C6(AA) will also enhance Cs(AA), this relation suggests that there are also other 
factors, which, in the Starkschall-Gordon approximation, are manifested through the ratio 
of the ground state expectation values. This shows that one way of rectifying (19) would be 
to introduce on the right-hand side the additional factor ( r 4 ) ~ a ( r Z ) , v ~ / ( ( r 4 ) ~ a ( r 2 ) ~ ~ ) .  
However, such a procedure is equivalent to introducing scaling factors KDQ(ub) and 
KQD(ub) into the Starkschall-Gordon formula to produce the relations 

C.fD(ub) = KQD(ub)(3/2)C~(ub)(r4)o/(r2)a.  (20b) 

The relations (20) will only he useful, yielding predictions more accurate than those of the 
unscaled relations (IS), if the scaling factors KDQ(ub) and KQD(ub) are suitably determined 
from trustworthy data for closely related systems. 

Table 2 
quadrupole dispersion coefficient (auP. 

Ancillary data for Ihe derivation of Smkschall-Gordon predictions of dipole 

(rYc (r')c (rZ)A (r4)n c f H F ( c c )  c,C~'(AA) c,CHF(CA) 
~~ 

LiF 0.890 1.052 11.613 57.119 0.077 19.14 1.066 
NaCl 4.893 9.462 27.766 243.986 1.514 159.5 12.43 

(I) Radial expectation values computed using free cation and OEMFS anion Dim-Foek wavefunctions computed 
(this work) for R = 3.7965 au GiF) and for R = 5.239 au (NaCI) the experimental Re values used in PO] and 
1211; coupled Hmm-Foek predictions CtHF(ab)  of dipolddipole dispersion eaefficients from [21]. 

Table 3. Comparison of coupled Haruee-Fock predictions for dipolequadrupole dispersion 
coefficients with corresponding results f" the Smkschall-Gordon formula (au)(l). 

CfQ(CA) CfD(CA) 

CHF SG CHF SG CHF SG CHF SG 
~ 

LiF 0251 0.273 352.8 282.423 9.749 7.865 ~1.665 1.890 
NaCI 12.32 8.78 5404.0 ,4204.7 221.579 163.838 50.252 36.055 

(I) Starl;schall-Cordon (SG) predictions calculated (this work) using in (18) the radial expenation values and 
(CHO Cdab) coefficients of table 2; CHF predictions for dipolequadrupole dispersion coefficients from [ZI]. 

Data suitable for determining the scaling factors in (20) are provided by the ab initio 
CHF computations of C&b) coefficients for the ion pairs in LiF, NaCl [21] and MgO 
[47] along with the CHF results for the corresponding c6(Ub) Coefficients. The CHF 
results [21] for the C6(Ub) coefficients in LiF and NaCl are presented in table 2 along 
with the expectation values computed from free cation and in-crystal anion OEMFS Dirac- 
Fock wavefunctions, calculated here for the same equilibrium R values as used in the 
ab initio computations (see note to table 2). The C&b) coefficients predicted from this 
data by using the Starbchall-Gordon formula (18) without scaling factors are reported 
in table 3 along with the corresponding ab initio CHF C&b) values. Division of each 
CHF result by the corresponding Starkschall-Gordon prediction yields the scaling factor 
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KDQ(ub) or KQD(ub) for the considered ion pair. The C&b) and C&b) coefficients 
used to determine the scaling factors should be fully comparable, as is the case if the CHF 
predictions are used for both coefficients. The subsequent use of these scaling factors to 
derive Ca(ab) coefficients, using the most accurate values currently available for the C&b) 
coefficients as input to (2@, canies the implicit assumption that electron correlation makes 
the same fractional contribution to all the quantities entering, (20). However, since for 
in-crystal ions the contributions of electron correlation to these dispersion coefficients are 
expected to be not greater than some 1CL15%, it is unlikely that any significant errors will 
be introduced by using this currently unavoidable assumption. Both the data in table 3 and 
the corresponding results for MgO reported in table 1 of [47] show that for the interaction 
of two ions each having a p6 outermost electronic configuration, the Siarkschall-Gordon 
formula underestimates C&b) which corresponds to scaling factors greater than unity. 
For LiF, the factor KDQ(ub) corresponding to the attraction involving an instantaneous 
quadrupole on the fluoride, is also greater than unity. This scaling factor is only less than 
unity, corresponding to overestimation of C&b) by the StarkchallGordon formula, for 
interactions in which the instantaneous quadrupole is present on the species of sz electronic 
configuration, 

It is clear that the scaling factor of 1.249 for the F--F- interaction in LiF should 
be used to calculate C8(AA) in CaF2. This factor is greater than that of 1.097 which 
would be deduced if the ab initio CHF Ca(AA) were to be compared with the prediction 
of 321.5 derived [21] from the Starkchall-Gordon formula with the expectation values 
calculated using in-crystal fluoride ion wavefunctions computed using the RVMW model 
for the crystalline environment. The OEMFS F wavefunction is considerably more 
compressed than its RVMW counterpart. This causes the former model to predict a smaller 
ratio (r4)~/(r2)A because a more repulsive environmental potential will produce a greater 
fractional reduction in ( r4)A than in (r2)A since the former expectation value will have larger 
contributions from tbe environmentally sensitive outer spatial regions. For CaF2, KDQ(CA)  
is taken to have the value of 1.240 equal to that (table 3) for LiF because both these 
interactions involve an instantaneous dipole on a cation interacting with an instantaneous 
quadrupole on a fluoride ion. For KQD(CA)  for CaFz, NaCl provides a much better model 
system than LiF because in this latter the instantaneous quadrupole is carried by a species 
of s2 and not p6 outermost electronic configuration. Hence the required KQD(CA)  is taken 
to be 1.394. The scalig factor used to determine Cs(Ca++..Ca++) will be taken to have the 
value of 1.418 deduced by comparing the CHF prediction of 3.153 au for c~(Mg++..Mg++) 
with its StarkchallGordon counterpart of 2.223 au [47]. This value for the scaling factor 
is very similar to that of 1.403 deduced for Ca(Na+..Na+) from the results in table 3 of 
MI. 

Table 4. Dipole-quadNpole dispersion coefficients and radial expectation values for CaF2 (au) 
predicted using the ODMFS description for the in-crystal fluoride ion('). 

11.201 35.850 11.255 50.657 144,005 477.894 139.805 111.764 

('I DipoleqwdNpole dispersion coefficients wlculved from (10) using the expecwion v3lurs of this fable and 
dipoledipole dispersion coefficients of able 1. i.e. scaling lhc predictions of ulc Swksclull4ordon formula (18) 
wifh lhc scaling facwrs of 1.418 (Ca(CC)). 1.249 (Cs(AA)). 1.240 (C,DQ(CA)) and 1.394 (CfD(CA)) derived 
as described in h e  text. 

The expectation values needed to calculate the dipolequadrupole dispersion coefficients 
for CaFz through (20) are presented in table 4. For the Ca++ ion, these expectation values 
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were evaluated from'the same free-ion Dmc-Fock wavefunction as used to compute the 
short-range two-body interactions. The corresponding expectation values for the in-crystal 
anion were evaluated from the fluoride ion ODMFS wavefunction found to be optimal for 
R = 4.5 au, very close to the experimental value of Re. Since the expectation values 
predicted from the RVMW and ODMFS fluoride wavefunctions are different, these two 
models yield different predictions for those C&b) coefficients involving the anion. The 
C8(ab) coefficients resulting from the use in (20) of these expectation values, the scaling 
factors just presented and the currently most accurate values (table 1) for the C&b) 
coefficients are also presented in table 4. 

3. Results and discussion 

For the closest cation-anion separations R listed in table 5, the cohesive energy function 
UL(R) has been computed for CaFz by using both the RVMW and the ODMFS models for 
describing the in-crystal modifications of the fluoride ion. The fluoride ion rearrangement 
energy and non-negligible short-range two-body interactions predicted by the ODMFS 
method both without and with the inclusion of the conkibutions from electron correlation 
are reported in this table. Numerical values for the correlation contributions can be obtained 
by merely subtracting the uncorrelated predictions in this table for the corresponding total 
results. 

Table 5. The OMDFS model rearrangement energies and short-range two-body interactions 
(an). 

R A q  E:;(R) E A R )  VPCA(R) VKA(R)  V:AA(R') KAA(R') 

3.5 4.83 1.59 
3.75 5.70 1.50 
4.0 6.40 1.36 
4.25 6.16 1.17 
4.5 5.60 1.06 
4.75 5.20 ~0.988 
5.0 4.94 0.968 
5.5 4.60 1.01 
6.0 3.90 1.20 

0.151 671 
0398051 
0.061255 
0.034552 
0.019855 
0.011 899 
0.007405 
0.003 042 
0.00~1 381 

0.142901 0.092233 0.089214 
0491 058 0.056601 0.054300 
0.055688 0.035842 0.034080 
0.030236 0.023554 0.022 182 
0.016570 0.015894 , 0.014822 
0.009388 0.010548 0.009714 
0.005505 0.007003 0.006356 
0.001 988 0.003087 0.002699 
0-00.0819 0.001 405 0.001 175 

0.014733 
..0.009048, , ,  
0.005746 
0.003785 
0.002360, 
0.001 420 
0.040826 
.0.000258 
0.000072 

0.013 575 
,, , 0.008079 

0.004923 
0.003 054 
0.001715 
0.000 864 
0.000354 

-0.000073 
-0.004 I53 

3.75 0.000 093 0.000053 4.75 0.000009 0.040008 
4.0 0,000033 0.000015 5.0 0.000005 0.000005 
4.25 0.000 015 0.000008. 

RI' = 2Ji2/3)R, all VPCc(R") and V:"f(R'') for R 2 5.5 are less than IO-?. 

The anion orbital properties, rearrangement energies and crystal cohesions predicted 
using the RVMW and ODMFS methods without the inclusion of electron correlation are 
compared in table 6 both for an R (4.5 au) close to the experimental Re value of 4.448 au 
[48] and for a significantly smaller R value. The ODMFS method predicts the in-crystal 
fluoride ion to be considerably more contracted than does the RVMW model as shown by 
the smaller mean radius ( (r)$ and mean square radius ((r2)Zp) of the anion 2p orbital 
yielded by the former approach. Comparison of these expectation values with those of 
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Table 6. The influence of the environmental model on the fluoride ion properties and crystal 
binding('). 

R = 4.5 R = 4.0 

(r)zp ( rZhp  u;(R) (7hp (r*)zp E;JR) u;(R) 
RVMW 1.223 2.030 ~ 9.5 -2431 1.204 1.944 23.4 -2038 
ODMFS 1.193 1.876 52.1 -2464 1.157 1.722 160.8 -2142 

(I)  Mean radius ( r ) z p  and mean square radius ( rz )zp  in au are averages with weights of 1/3 and 2/3 over those for 
the relativistic orbitals 2 ~ ~ 1 2  and 2~312 having j = I f 2  and j = 312 respectively. Energies E;JR) and U:(R) in 
k,l mol-!. 

1.256 ( ( r ) zp )  and 2.211 ( ( r 2 ) z p )  for a free fluoride ion shows that the ODMFS method 
predicts reductions in these orbital properties which are roughly double those resulting 
from the RVMW computations. The rearrangement energies needed to generate the greater 
compressions in the ODMFS model are five times larger than the corresponding RVMW 
predictions. However, the reduced overlap of the cation orbitals with the former more 
compressed anion wavefunctions causes the ODMFS values of 41.7 kJ mol-' and 94.1 W 
mol-' for the short-range repulsions V,0,,(4.5) and V$,(4.0) to be significantly less than 
the corresponding RVMW results of 57.0 kJ mol-' and 138.6 kJ mol-'. The reduction of 
these repulsions in the ODMFS method, when compared with those of the RVMW model, 
more than offsets the greater E;<(R) values in the former approach with the consequence 
that the ODMFS method predicts greater crystal cohesions as manifested by more negative 
values of U:(R). The variational energy criterion thus shows that the ODMFS method is 
preferable to the RVMW model with the former providing a more realistic description of 
the in-crystal anion. 

For the near-equilibrium R value of 4.5 au, the increase of some 33 kJ mol-' in the 
crystal cohesion predicted~on passing from the RVMW to the ODMFS model is identical to 
that found [lo] for MgO at R = 3.981 au, near Re, although less' than that of 97 kJ mol-' 
at 4.544 au for CaO near its equilibrium R value. The experimental lattice energy of CaFz 
of 2630 W mol-' [49] is slightly less than that of 3038 W mol-' [50] for MgO, so that the 
fractional increase in the predicted cohesion is slightly greater for CaF2. Comparison of the 
CaFz RVMW and ODMFS potentials F>fL(r.; R )  shows that the latter is much more sharply 
peaked for r, in the vicinity of R. Thus for example at R = 4.5, the essentially constant 
portion of Fjf;(ro; 4 . 3 ,  where the contribution from overlap with neighbouring cations is 
negligible, extends from zero r, up to an r, value of about 3.1 au in the ODMFS method, 
whilst in the RVMW model this constant portion ends at r, = 2.629 au. Furthermore, the 
ODMFS function F$i(ra; 4.5) becomes positive for r, = 4.0 au and reaches its maximum of 
1.85 au at r. = 4.5 au. This maximum should be compared with the value of -0.3917 au 
for FJfL(r.;4.5) in its constant region at small r.. with the occurrence of a positive 
region, this ODMFS environmental potential resembles the ODMFS and OEMFS potentials 
found for CaO for R = 4.5 au, whereas these potentials are nowhere positive for MgO at 
R = 3.981 au. It is only at smaller R for MgO that these environmental potentials have 
positive regions. The lattice energy, closest equilibrium cation-anion separation and bulk 
modulus predicted for CaFz by the R M W  and ODMFS methods but without consideration 
of electron correlation are compared in table 7 with the experimental values measured 
at temperatures close to 0 K. Although the ODMFS method predicts a greater cohesion 
as manifested by a larger De and smaller Re values, even these ODMFS results show 
significant discrepancies with experiment, thus demonstrating the importance of electron 
correlation effects. 



9142 N C Pyper 

Table 7. The crystal cohesion predicted without inclusion of a electmn correlation(',2). 

RVMW ODMFS expt 

D. 2458 2479 2630 
R. 4.731 4.698 4.448 
B 7.141 5.915 8.825 

(I) Lattice energy D. in U mol-!, equilibrium closest cation-anion separation Re in BU and bulk 
modulus B in 1O1O N m-z. Experimental D. from [491, R, at 6.4 K from [481 and B calculated 
as (CII + 2C12)/3 from the experimental 4.2 K measurements [511 CII = 17.12 x 1O'O N mL2 
and C12 = 4.675 x 10" N m". 
e) AI1 m u l l s  derived from cohesive energy function (2). 

Table S. The crystal cohesion predicted with the inclusion of elecwon correlation(l.z). 

no disp no EFY(R)  full UL(R)@) expt 

D. 2500 ~ 2553 2560 2630 
RVMW R. 4.681 4.625 4.616 4.448 

B 7.701 8.382 8.491 8.825 
D. 2522 2613 2631 2630 

ODMFS R, 4.640 4.478 4.457 4.448 
B 6.085 8.346 8.899 8.825 

(1) See note 1 to table 7. 
(2) AI1 calculations include shon-range two-body correlation terms V s Z ( R ) ,  V;K([Z/&)JR) 
and Vig([2&2/3)JR).  The column headed no disp excludes dispersion energy Udilp(R) but 
includes E F ( R ) ,  lbat headed no EFY(R))  uses full UL(R) function (7) but with comelation 
conh'ibulion (1.5) to rearrangement energy excluded. 
0) Camputed using full UL(R) function 0). 

The crystal cohesions predicted by both the RVMW and ODMFS methods on 
successively introducing the different contributions from electron correlation are compared 
with experiment in table 8. Even with the inclusion of all the correlation contributions to 
UL(R), namely the short-range two-body terms VEF(x,bR), the correlation contribution 
E F ( R )  to the rearrangement energy and the dispersive attractions Udj,(R), the predictions 
of the RVMW model do not show good agreement with experiment. Thus this model 
underestimates the lattice energy by 70 !d mol-' whilst overestimating Re by 0.168 au. 
However, the introduction of all these correlation corrections into the ODMFS predictions 
yields results in excellent agreement with experiment. This shows that the behaviour of 
CaF2 parallels both that of MgO and CaO [lo] in that, whilst the RVMW model is not 
fully adequate, the ODMFS method provides a realistic description of the environmental 
potential, yielding rearrangement energies and two-body potentials sufficiently accurate to 
generate excellent predictions for the crystal cohesion. 

Comparison of the second and third columns of results shows that, in the ODMFS 
method, the contribution of electron correlation to the rearrangement energy is small but 
nevertheless of crucial importance in obtaining agreement between theory and experiment. 
It should be pointed out that this excellent agreement does not depend on using the data 
for free fluoride ion to determine the correction factor B,,,,, in (15). Thus if one were to 
adopt the arguments presented [lo] for in-crystal0'- ions and conclude that the behaviour 
of the electron correlation for a fluoride ion in-crystal is more similar to that of neon than 
that of a free fluoride ion, B,,, would be derived by dividing the exact correlation energy 
of -0.393 au [34] for neon by the density functional (12) prediction [lo] of -0.7397 au. 
The use of E T " ' ( )  values derived from the resulting correction factor of 0.531 yields 
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predictions of 2630 !d mol-', 4.459 au and 8 . 8 5 3 ~  IO" N m-z for De, Re and B respectively 
which are essentially unchanged from those of table 8. The greater contractions of the anion 
wavefunctions predicted by the ODMFS method compared with their RVMW counterpm 
cause the former approach to predict more negative values for E r ( R ) .  For example at 
R = 4.5 au with B,,, taken to have the value of 0.576 derived from the data for a free 
fluoride ion, the RVMW prediction for E F ( 4 . 5 )  of -4.2 kJ mol-' is about half of that 
of -8.6 kJ mol-' computed from the ODMFS anion wavefunction. The two methods 
predict EFT(R) values differing by this factor of about two over the entire range of R 
considered. The quantities E F ( R )  were neglected in the earlier RVMW computations for 
halides on the grounds that the smallness of the uncorrelated terms E!#?) indicated that 
these correlation contributions would be insignificant. For the RVMW model the absolute 
magnitude of E F ( R )  constitutes a much greater fraction of the uncorrelated prediction 

than is the case with the ODMFS method. This has the consequence that the total 
rearrangement energies E J R )  predicted with the RVMW model are far too small especially 
at intermediate and larger R values, a conclusion demonstrated by comparison with their 
ODMFS counterparts. Thus for R = 4.5, the addition of the E F ( 4 . 5 )  values just reported 
to the uncorrelated values in table 6 yields an RVMW prediction of only 5.3 Id mol-' for 
the total rearrangement energy E,,(4.5) compared with the ODMFS result of 43.5 kJ mol-I. 

The importance of the inter-ionic dispersive attractions in the cohesion of CaFz is 
shown by comparing the predictions derived with their neglect and reported in the first 
numerical column of table 8 with those computed using the full UL(R).  It should be 
noted that, unless the dispersion is included, the ODMFS method predicts values for the 
bulk modulus which are too small by at least 25%. The dispersion energies predicted 
for the ODMFS calculations have magnitudes [Udisp(R)l considerably greater than those 
derived from the RVMW model because the significantly more compressed ODMFS anion 
2p orbitals produce a value (2.755) for the fluoride ion dispersion damping parameter dn 
which is considerably larger than that of 1.616 resulting from the RVMW model. For a 
given inter-ionic separation a larger dispersion damping parameter increases the value of the 
dispersion damping function ,y;b(xabR) with the result that the magnitude of the dispersion 
energy is less reduced by the damping. Thus, the predicted lattice energy increase of 60 kJ 
mol-' on the introduction of dispersion into the RVMW model is only about half of that 
of 109 kl mol-I resulting from introducing dispersion into the ODMFS calculations. The 
behaviour of CaFz has therefore been shown to exactly parallel that found for MgO and 
CaO [lo] where it is the interplay between the dispersion and the improvement of the 
description of the environmental potential provided by the ODMFS method which together 
are responsible for the much better description of the crystal cohesion by the ODMFS 
method. 

4. Conelusions 

The cohesion of cubic CaFz has been studied within the framework of a suitably defined 
fully ionic model in which it is assumed that the total electronic wavefunction of the crystal 
can be written as an antisymmetrized product of individual ion wavefunctions each of 
which is spherically symmetric and contains a fixed integral number of electrons. The 
radius variable Madelung-Watson (RVMW) [7] and later optimized on density Madelung- 
Fermi smoothed (ODMFS) models [lo] for describing the environmental potential acting on 
an anion electron and hence for generating fluoride ion wavefunctions adapted to their in- 
crystal environments were compared. The use of these wavefunctions to compute with the 
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relativistic integrals program that portion of the crystal cohesion not arising from electron 
correlation showed the ODMFS method to be preferable to the RVMW model. 

The evaluation of the contributions made by electron correlation to the crystal cohesion 
necessitated refining the method for deriving the dipole-quadrupole dispersion coefficients 
using the Starkchall-Gordon formula as well as developing a new way for computing 
the contribution of electron correlation to the fluoride ion rearrangement energy. The 
RVMW model has been shown to be not fully adequate for CaFz as its predictions for the 
crystal cohesion show significant discrepancies with experiment even after inhoducing all 
the contributions from electron correlation. The introduction of all these contributions to the 
ODMFS calculations generated predictions for the lattice energy, closest equilibrium cation- 
anion separation and bulk modulus agreeing excellently with experiment. The behaviour of 
CaFz is thus similar to that of MgO and CaO for which it has already been shown [ 101 that, 
whilst the RVMW model is not fully adequate, the ODMFS method provides an excellent 
description. 

It has been shown that the ODMFS approach realistically describes the in-crystal 
modifications of the anion wavefunction in CaFz. If can therefore be concluded that the 
rearrangement energies and two-body inter-ionic potentials predicted from the ODMFS 
method and reported in table 5 are sufficiently accurate to provide a trustworthy springboard 
for future investigations of other properties of this material. 
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